Generative AI for Autonomous Driving Systems Testing Andrea Stocco

TIM fortiss

Image generated with DALL·E 3

Automated Software Testing

We like to generate tests, monitor them, and make them real!

Dr. Andrea Stocco Head of AST @ fortiss Prof. @ TUM

stocco@fortiss.org andrea.stocco@tum.de

lambertenghi@fortiss.org

Stefano Carlo Lambertenghi Generative AI Testing / **Reality Gap Assessment and** Mitigation

Davide Yi Xian Hu Generative AI Testing

hu@fortiss.org

sorokin@fortiss.org

Lev Sorokin

Algorithm Optimization / **Cross-Simulation** Testing

xchen@fortiss.org

Xingcheng Chen eXplainable Artificial Intelligence (XAI) / **Post-Production Testing**

Oliver Weißl Algorithm Optimization

weissl@fortiss.org

Automated Software Testing

Core Research

Automated Test Generation

How can we automatically generated complex scenariobased tests efficiently and effectively?

• Al for Testing

How can we leverage GenAl techniques, uncertainty quantification and explainable Al for testing CPS?

Post-production Testing

How to ensure a high dependability of deep neural network driven-cyber-physical systems (CPS) in production?

- Transferability between Virtual vs Physical-world Testing
- Assessing Quality Metrics Reality Gap Input Mitigation with GenAl
- GenAl for Test Domain Augmentation

Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems

> Stocco, Pulfer, Tonella. In IEEE Transactions on Software Engineering. 2023

Automated Driving System (ADS) testing

How to ensure that an ADS system is ready for deployment?

Automated Driving System (ADS) testing

How to ensure that an ADS system is ready for deployment?

Reality Gap

Difference between simulated and real vehicle

Perception Reality Gap

Difference between simulated and real input images

Simulation

9

Real-world

When considering simulated and real-world environments...

- Would the same driving model behave the same?
- Would it fail the same?

Same lane-keeping model

architecture, two worlds

Would the same driving model behave the same?

Steering angle distributions do transfer across simulated and real-world environments

Expected as we aligned the two environments. It may suggests that component-level testing is an option but...

Virtual (green) and physical (red) trajectories.

Lateral position is different across simulated and real-world environments

Component-level testing is not an option, we need system-level testing

Uncertainty is higher in real-world environments

We need real-world testing (or better simulators)!

Would it fail the same?

We test both simulated and real cars under the same conditions (img corruptions)

Uncertainty useful to prioritize simulations for real-world execution

Figure 7: RQ4: test selection for DAVE-2: all tests with uncertainty above the median are not executed in the real-world. Uncertainty useful to prioritize simulations for real-world execution

Figure 7: RQ4: test selection for DAVE-2: all tests with uncertainty above the median are not executed in the real-world.

Assessing Quality Metrics for Neural Reality Gap Input Mitigation

Lambertenghi and Stocco.

In Proceedings of 17th IEEE International Conference on Software Testing, Verification and Validation 2024

Generative Image-to-Image Translation

Generative models for perception reality gap mitigation

Generative Image-to-Image Translation shortcomings

Generated

Evaluate Image-to-Image Translation models

Measure quality of generated images, considering the target domain

Generated

Real-world

Single-Image Metrics

Precise comparison

Mapping required

Distribution-Level Metrics

No mapping required

Single value for entire dataset

TIM fortiss

Perception-based ADS Tasks

Vehicle detection

Redmon, J. et al.	2018
Lin, T. et al.	2014
Bojarski, M. et al.	2016
Stocco, A et al.	2023

Lane keeping

Mind the Gap!

ADS Evaluation metrics

Attention Error

2013

2016

Dean, T. et al.

Gal, Y. et al.

Generative Image-to-Image Translation Models

Paired training

Zhu, J.-Y. et al. 2017 **Isola, P. et al.** 2017

28

fortiss GmbH I Technical University of Munich

Unpaired training

TIM fortiss

Image Quality Metrics

Single Image Metrics

Distribution Level Metrics

IS **FID** KID SSIM **PSNR** MSE CS TSI WD KL Histl CPL SSS

Inception-score Fréchet Inception Distance Kernel Inception Distance

- A Structural Similarity Index
 Peak signal-to-noise ratio
 Mean Squared Error
 Cosine Similarity
 Texture Similarity Index
 Wasserstein Score
 KL Divergence
 Histogram Intersection
 Classifier Perceptual Loss
 - Semantic Segmentation Score

Empirical evaluation

Correlation

How do existing Image-to-image evaluation metrics correlate with the associated ADS behaviour?

Distribution Level Metrics

	Inception (IS)	n-score	Fréchet Distance	nception (FID)	Kernel Ir Distance	ception (KID)
	Vehicle detection ^L	ane keeping.	Vehicle detection	ane keeping.	Vehicle detection	ane keeping.
Prediction Error	0.41	0.14	0.24	0.64	0.54	0.54
Confidence	0.37	0.72	0.21	0.86	0.64	0.74
Attention Error	0.41	0.65	0.32	0.78	0.86	0.60

C

Distribution Level Metrics

	Inception-score (IS)		otion-score Fréchet Inception Distance (FID)		Kernel In Distance	(KID)	\frown	IS and FID are
	Vehicle detection ^L	ane keeping	Vehicle detection	.ane keeping	Vehicle detection ^L	ane keeping		inconsistent across tasks
Prediction Error	0.41	0.14	0.24	0.64	0.54	0.54		
onfidence	0.37	0.72	0.21	0.86	0.64	0.74		
Attention Error	0.41	0.65	0.32	0.78	0.86	0.60		

Distribution Level Metrics

	Inception-score (IS)		Fréchet l Distance	réchet Inception istance (FID)		ception (KID)	\frown	IS and FID are
	Vehicle detection ^L	ane keeping	Vehicle detection ^L	ane keeping	Vehicle detection Lane keeping		(1)	inconsistent across tasks
Prediction Error	0.41	0.14	0.24	0.64	0.54	0.54	2	KID is consistent across tasks
Confidence	0.37	0.72	0.21	0.86	0.64	0.74		
Attention Error	0.41	0.65	0.32	0.78	0.86	0.60		

Distribution Level Metrics

	Inception (IS)	i-score	Fréchet l Distance	réchet Inception Kernel I vistance (FID) Distance		ception (KID)	\frown	IS and FID are	
	Vehicle detection ^{La}	ane keeping	Vehicle detection ^L	ane keeping	Vehicle detection ^L	ane keeping	(1)	inconsistent across tasks	
Prediction Error	0.41	0.14	0.24	0.64	0.54	0.54	2	KID is consistent across tasks	
Confidence	0.37	0.72	0.21	0.86	0.64	0.74	\bigcirc		
Attention Error	0.41	0.65	0.32	0.78	0.86	0.60	3	FID is best performer for Lane Keeping,	
		Deereen'			a a t (0, 1)]		detection	

D

C

n

Single Image Metrics (2 BEST PERFORMERS)

Classifie Perceptu (CPL)	r Jal Loss	Semantic Segmentation Score (SSS)				
Vehicle detection	ane keeping	Vehicle detection Lane keeping				
0.29	0.30	0.23	0.25			
0.23	0.30	0.21	0.30			
X	0.16	×	0.26			
	Classifie Perceptu (CPL) Vehicle detection 0.29 0.23	Classifier Perceptual Loss (CPL) Vehicle detection Lane keeping 0.29 0.30 0.23 0.30 X 0.16	Classifier Perceptual Loss (CPL)Semantic Segment Score (SSVehicle detection Lane keepingVehicle detection L0.290.300.230.230.300.21X0.16X			

Pearson's correlation coefficient (0,1) [Best of 6 models]

At least 1 of 6 datasets has wrong correlation direction

D

n

Single Image Metrics (2 BEST PERFORMERS)

	Classifie Perceptu (CPL)	r ual Loss	Semantic Segmentation Score (SSS)			
	Vehicle detection ^L	ane keeping	Vehicle detection ^L	ane keeping		
Prediction Error	0.29	0.30	0.23	0.25		
Confidence	0.23	0.30	0.21	0.30		
Attention Error	×	0.16	×	0.26		

Pearson's correlation coefficient (0,1) [Best of 6 models]

At least 1 of 6 datasets has wrong correlation direction

D

Single Image Metrics (2 BEST PERFORMERS)

	Classifie Perceptu (CPL)	r ual Loss	Semantic Segment Score (SS	c tation SS)			
	Vehicle detection	ane keeping.	Vehicle detection	.ane keeping			
Prediction Error	0.29	0.30	0.23	0.25	(1	All metrics have weak or negligible correlation
Confidence	0.23	0.30	0.21	0.30			
Attention Error	×	0.16	×	0.26	(2	Multiple metrics have the wrong correlation direction
Pearson's ر	correlatio	n coefficie	nt (0,1) [Be	est of 6 mo	dels]		

At least 1 of 6 datasets has wrong correlation direction

Empirical evaluation

Fine-tuning

Does fine-tuning of I2I perception-based metrics improve the sim2real mitigation measurement?

RQ3 (Fine-tuning)

Generated

Real-world

Semantic segmentation model

Targeted Semantic **TSS** = Segmentation

fortiss

RQ3 (Fine-tuning)

Takeaways

Relative **Behaviour Metrics**

Image-to-image GenAI tools effectively tackle domain adaptation in ADS

Current GenAl metrics don't align well with the software behavior that relies on their output

We need more domain-informed, semantic-aware metrics

Efficient Domain Augmentation for Autonomous Driving Testing Using Diffusion Models

> Baresi, Hu, Stocco, Tonella. https://arxiv.org/abs/2409.13661

ADS requires extensive coverage of the ODD

From regulations to implementation

Existing Standards and Regulations

- ISO/PAS 21448 Safety of the Intended Function (SOTIF)
- UN Regulation No 157 (2021/389)
- ISO 34505 "Scenery Elements (Section 9)" and "Environmental Conditions (Section 10)"

Operational Design Domain (ODD)

- roadway types
- geographic area
- speed range
- environmental conditions (weather as well as day/night time)

Simulators with Generative Al

Simulators

- Scalable Testing Environments
- Cost-Effective Data Generation
- Enhanced Control and Repeatability

...enhanced with Generative Al

- Domain-to-Domain transformations (e.g., CycleGAN)
- Text-to-Image transfomations (e.g., Stable Diffusion)
- Edit-Instruction transformations (e.g., InstructPix2Pix)
- Control-conditioned transformations (e.g., Controlnet)

Solution: Diffusion Models

Usage for Test Set Augmentation in simulation platforms

Augmentation: Lightning Strikes

Input Image

Instruction-edited

Inpainting

Inpainting with Refining

Augmentation: Autumn Season

Inpainting with Refining

TIM fortiss

45 fortiss GmbH I Technical University of Munich

Instruction-editing

Prompt: Textual

Inpainting

Prompt: Textual + Mask

Inpainting with Refinement

Prompt: Textual + Mask

Simulators with Generative AI

Proposed Testing Setup

Simulators with Generative AI (naïve integration)

InstructPix2Pix (Diversity, No Temporal Consistency)

Simulators with Generative AI (knowledge distillation)

Our Proposition based on Knowledge Distillation (Diversity and Temporal consistency)

Contributions

Empirical evaluation

RQ1 Semantic Validity

RQ2 Effectiveness

- RQ3 Efficiency

3

Perception-based ADS tasks

Diffusion models architectures

Empirical evaluation

Validity

Do diffusion models generate augmented images that are semantically valid ODDs?

How effective is the semantic validator at detecting invalid augmentations?

Human Study - Semantic Preservation OC-TSS

Human Study

33 participants
 (about 3150 answers)
 66%+1 Agreement

- Instruction-Edited: TP: 18, FN: 2, TN: 16, FP: 0
- Inpainting: TP: 19, FN: 10, TN: 0, FP: 0
- Refining:TP: 10, FN: 4, TN: 4, FP: 3

	Training Set						
TARGET	Class0	Class1	SUM				
Class0	47 54.65%	3 3.49%	50 94.00% 6.00%				
Class1	16 18.60%	20 23.26%	36 55.56% 44.44%				
SUM	63 74.60% 25.40%	23 86.96% 13.04%	67 / 86 77.91% 22.09%				

Empirical evaluation

Effectiveness

How effective are augmented images in exposing faulty system-level misbehaviors of ADS?

Empirical evaluation

Efficiency

What is the overhead introduced by diffusion model techniques in simulation-based testing?

Does the knowledge-distilled model speed up computation?

Performance Overhead (Inference)

- Mormal Simulator with ADS:
 100.24 ± 22.24 milliseconds
- AugmentedSim with Instruction:
 1118.47 ± 114.89 milliseconds (+11X)
- AugmentedSim with Inpainting:
 1370.61 ± 105.95 milliseconds (+13X)
- AugmentedSim with Inpainting with Refinement: 2029.57 ± 115.03 milliseconds (+20X)
- Our Approach (Knowledge Distillation):
 120.30 ± 0.7 milliseconds (+0.02X)

Takeaways

ORIG ODD NEW

ODD

Behaviour Metrics

2

They complement simulator testing, uncovering failures in areas previously considered error-free

Knowledge distillation is key to achieving high simulation efficiency

Thank you very much!

f 🕑 🖸 🗸 in 🕒

Your contact stocco@fortiss.org

fortiss ©2024

This presentation was created by fortiss. It is intended for presentation purposes only and to keep it strictly confidential. The transfer of the presentation to our partners includes no transfer of ownership or rights of use. A transfer to third parties is not permitted.